Fault-Tolerant Systems Design — Estimating Cache
Contents and Usage'

Authors: Raphael R. Some Raphael.R.Some@jpl.nasa.gov, John Beahan J ohn.Beahan@)jpl.nasa.gov, Garen Khanoyan

Garen.Khanoyan@jpl.nasa.gov, Leslie N. Callum Leslie.N.Callum@ipl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove
Pasadena, CA 91109
(818) 354-1902

Abstract—Development of the REE Commercial Off The
Shelf (COTS) based space-borne supercomputer requires a
detailed knowledge of system behavior in the presence of
Single Even Upset (SEU) induced faults. When combined
with a hardware radiation fault model and mission
environment data in a medium grained system model,
experimentally obtained fault behavior data can be used to:
predict system reliability, availability and performance;
determine optimal fault detection methods and boundaries;
and define high ROI fault tolerance strategies. The REE
project has developed a fault injection suite of tools and a
methodology for experimentally determining system
behavior statistics in the presence of SEU induced transient
faults in application level codes. Where faults cannot be
directly injected, analytic means are used in conjunction
with experimental data to determine probabilistic system
fault response. In many processors, it is not possible to
inject faults directly into onboard cache. In this case, a
cache contents estimation tool can be used to define
probabilistic fault susceptibility which is then combined
with direct memory fault injection data to determined fault
behavior statistics. In this paper we discuss the structure,
function and usage of a PPC-750 cache contents estimator
for the REE project.

TABLE OF CONTENTS
Introduction
Methodology Overview
CCE Goals and Raison D’étre
Cache Content Estimator Overview
Detailed Design and Operation
Conclusions and future work

AR ol

1. Introduction

The objective of the Remote Exploration and
Experimentation (REE) Project is to bring supercomputing
technology into space. It has twin goals of i) demonstrating
a process for rapidly transferring Commercial-Off-The-
Shelf (COTS) high-performance computing technology into
ultra-low power, fault tolerant architectures for space and ii)

demonstrating that high-performance onboard processing
enables a new class of science investigation and highly
autonomous remote operation.

The REE project is employing mainly COTS hardware and
software components, and relying on Software-Implemented
Fault Tolerance (SIFT) to mitigate the effects of radiation-
induced errors. Natural space radiation can cause soft errors
known as SEU’s in non-radiation-hardened electronics.
Thus, REE’s primary reliability concern is the detection and
mitigation of SEU’s. To provide ease of mission insertion,
flexibility in configuration, straightforward upgrade as the
state of the art progresses and ease of fault tolerance
insertion, REE’s architecture of choice is a cluster
computer. The intent is to leverage the considerable
technology investments made in commercial cluster
computers and to augment or modify the standard
commercial cluster architecture as necessary to provide
enhanced reliability for the embedded spaceborne
environment. A cluster computer is a parallel processing
system which consists of interconnected stand-alone
computers working together as a single integrated
computing resource [1]. Some of the salient characteristics
of cluster computers are: multiple high performance
processors with local memory, fast network interconnects,
high-bandwidth/low-latency communication protocols, a
standard Operating System (OS) on each processor, access
to shared mass storage and a convenient parallel
programming environment. Figure 1 shows the baseline
REE architecture comprising a set of processing and mass
memory nodes which are multiply interconnected via a high
speed switched network fabric.

Each processing node comprises two state of the art
processors, eg. PPC750 or G4 processors, a large local
memory and a network interface. In addition to network low
level interconnect functions, the network interfaces also
provide high level I/O handling protocols such as Message
Passing Interface (MPI) so that the node processors may be
off-loaded from relatively mundane I/O tasks. The mass
memory nodes provide a large (several GigaBytes), solid
state, reliable, non-volatile memory for the system.

Lips: OTK not protected by U.S ight. m/.ﬂM

Multiple such “disk emulators” are provided for parallel
high-speed access by the processing nodes as well as for
fault tolerance support. The spacecraft interfaces to the
REE computer via these mass memory nodes through the
inclusion of a custom I/O controller in each mass memory
node which provides multiply redundant interconnection to
the spacecraft data and housekeeping busses. Thus, the
spacecraft control computer and instrument controllers view
the REE cluster as a mass memory device. Instrument data
and processing commands are written, as files, to the mass
memory, while processed data and status are accessed as file
read operations. The spacecraft housekeeping bus is
extended into the individual nodes of the REE computer to
facilitate externally commanded diagnostic procedures by
- the Spacecraft Control Computer (SCC). Advanced
processor architectures are increasingly implementing low
level fault detection/protection mechanisms and some of
these mechanisms are baseline into the REE architecture.
These include Single Error Correct Double Error Detect
(SECDED) Error Detection and Correction (EDAC) on
local memories, parity protection on external caches,
exception detection in ALUs and MMUS, and watchdog-
configurable timers.

In addition to the dual processors, each node has IMB of L2
cache for each processor and 256MB of shared memory.
The Mass Memory Nodes are as described above. The
internal REE system interconnect is a dual redundant
Myrinet switched network fabric with a maximum
theoretical bandwidth of approx. 1.23 Gb/S bidirectional per
channel. Network topology is a chordal ring an (octal)
network switch located in each node. The Mass Memory
nodes provide dual redundant 1394 interfaces for normal
operation and a dual redundant IIC “backdoor” bus for
diagnostic, debug and housekeeping functions.

Processing Node
- 1

PCI

Proéessing Node

Mass Memory Node 1

Processing Board

Memory / /O
Board

knowledge of fault types and rates and of fault propagation
paths, behaviors and probabilities. These characteristics are
dependent on the hardware used to implement the
architecture, the radiation environment, the system and
application software, and their interactions. In order to
investigate these issues, a method has been developed that
utilizes experimentation to obtain fundamental effects and
modeling to predict system level behavior, performance,
reliability and availability. The following section explains
the methodology and tool set.

2.Methodology Overview

The REE project requires a means for trading off
performance and power utilization versus reliability and
availability. The method must be generally applicable to
alternative architectures and applications and, once
developed, relatively straightforward to implement. Unlike
traditional fault tolerant systems, a degree of unreliability or
unavailability is acceptable in many applications, i.e., .95 or
.99 rather than 99999 may be an acceptable reliability
figure for some REE missions. On the other hand, it is
imperative that the system fault behavior and reliability be
accurately predictable. The mission system engineer must
be able to 'dial in' a desired level of reliability and fault
behavior based on mission phase and criticality. Thus, a
methodology is required which will allow characterization
and modeling of probabilistic system behavior, reliability
and availability under varying applications, environments,
loads, and operational scenarios.

Radiation effects experiments are performed on the
hardware components to determine subsystem level
radiation sensitivities. Results for a processor, for example,

Spacecraft
Housekeeping/Backdoor
B d

Mass Memory Node 2

1IIC

To Spacecraft

Processing No de_L
3 W

Processing Node |
4

w4t Processing Board s

PCl

Memory/ /O
Board

Spacecraft High Speed
Data Bus eg dual1394

Figure 1: REE Baseline architecture useable if integrated with spacecraft

The development of an effective and efficient fault detection
and mitigation strategy for REE requires a detailed

include fault rates for the L1 data cache, the L1 instruction
cache, the general-purpose registers (GPRs), the floating

point registers (FPRs), the memory management unit
(MMU), etc.

The results of the radiation experiments are used to develop
a radiation fault model [2]. This model is used to predict the
fault rates that will occur in a given radiation environment
(e.g., Low Earth Orbit, Geo-synchronous Orbit, Deep space,
Solar Flare, etc.). The model provides the number of faults
per unit time per subsystem.

Using information about the hardware architecture, the
Error Model predicts the types of errors that can arise as a
result of an SEU occurring in a given subsystem.
Essentially, the process of generating the error model is one
of listing all possible faults and then, by analysis,
propagating each fault through the hardware to the first
point at which it impacts software or system operation. The
emphasis of this effort is on subsystems into which faults
cannot be directly injected with Software Implemented Fault
Injection (SWIFI). Thus, it is not necessary to trace every
possible error resulting from a general -purpose register bit
flip. It is however, necessary to list all the possible
outcomes of SEUs in MMU and cache address translation
registers, cache tag rams, etc.

The Hardware Utilization Model, provides a means for
determining the software (hardware utilization) dependent
probabilistic fault propagation statistics and the method by
which SWIFI fault injection techniques [3], [4] can be used
to emulate the effects of the underlying fault.

The central component of this methodology is the
construction and execution of fault injection campaigns.
Fault injection campaigns are designed to provide fault/error

effects of the faults (e.g., system crash/hang, incorrect
result, no apparent effect) and their associated probabilities.
The Cache Contents Estimator (CCE), which is the focus of
this paper, is used to deal with the inability of SWIFI
techniques to inject bit flip faults into the processor's cache
memories. Faults are injected into an application's
instruction, data, heap, and stack segments in main memory
to determine the fault behavior statistics of each type of
error. The CCE predicts how much of each of these
segments will be in the cache at any given time. The final
error rate for each of these segments in cache is proportional
to its size. The system model combines the behavior
statistics from memory fault injection experiments with the
cache fault rate calculated by the fault model to determine
overall system failure rate due to cache SEUs.

Finally, the system reliability and performance model is
constructed using knowledge of the system architecture,
predictions from the fault model, the results of the fault
injection experiments and the CCE results. The model
predicts the system's reliability and performance in a given
radiation environment. It can be used during system
development to identify appropriate system architectures
and fault tolerance strategies. During fielded operation, the
model can be used to predict the system's behavior in
changing circumstances and modify it as appropriate (e.g.,
increase checkpointing frequency, change system
operational mode between simplex and various levels of
redundancy, uplink fault-tolerant linear algebra libraries,
etc.). Once the basic system model has been created and
validated, it is relatively straightforward to apply it to a
predicted environment. By inputting application-software-
specific fault behavior statistics and mission environmental
parameters the model will provide the predicted system fault

[Radiation FaultModel |

| Radiation Error Model

l< Fault Rates per Device Subsystem (from radiation experiments)

< System/Subsystem Fault Types/Rates in Space Environments
I‘—Hardware Design (from mfg'rs documents)

and Prog

tion Dependencios

< Subsystem Fault Mok

| Hardware Utilization Model I‘—Parametric Characterization of Software

< Subsystem Fault Mode Probabilities

— - F
[Fautt Injection Experiments | + System/Application Software

< Fauit Effects and Sensitivities

ault/Error Tree (From Fault/ Error Models)

SystemVApps Softwar

[System Model

J‘—[Cache Contents Esﬁmaﬁof + Hardware Design

v
I System Performance, Availability and Reliability |

Figure 2: Modeling Methodology Block Diagram

sensitivities of the system components and system fault
behavior statistics. The campaigns are conducted on the
operational system. Results are analyzed to determine the

behavior and reliability for a range of fault tolerance
techniques, consequently providing an early testbed for
supercomputer based mission development. Figure 2

captures the methodology and tool set developed for the
REE project.

3. CCE Goals and Raison D’étre

State of the art processor architectures implement one or
more levels of on-chip cache memory. These devices do not
support software implemented fault injection into their
cache memories. The internal cache memories are often,
however, the most SEU-vulnerable computer subsystem..
To determine the reliability and availability of a PPC-750
based system it is therefore necessary to determine both the
effects of an SEU and the probability of an SEU fault
occurring. Inasmuch as the effect of an SEU is dependent on
its location, it is necessary to perform memory based fault
injection campaigns to obtain the fault effect statistics for
each software segment. For the REE project, SWIFI
techniques were used to perform massive fault injection
campaigns targeting each module of the application and,
within each module, the code, data, stack and heap
segments. For each type of fault injected, i.e., single or
multiple bit flips into code, data, stack or heap, the resultant
output was classified as correct, incorrect, crash or hang.
Combining the results of these experiments, a statistical
distribution was built relating fault type and location to
probabilistic result. These fault behavior statistics, however,
are not an indication of in-situ system behavior as the main
memory is protected from single and double bit errors and
the L2 Cache is protected from single bit errors. In a fielded
PPC-750 based system, only the internal L1 cache is
vulnerable to SEU faults. To obtain realistic estimates of in-
situ system behavior, we can combine the fault effect data
from memory fault injection experiments with fault arrival
rate for the L1 cache. To do this correctly, however, it is
necessary to map the contents of the L1 Cache over time
and to weight the behavior statistics accordingly in the
system model. The CCE provides the cache contents
mapping over the execution interval for the system model.

4. Cache Content Estimator Overview

The CCE toolset is divided into two parts: a) Dynamic
Application Address Extractor (DAAX) and b) CacheSim.
DAAX extracts the memory locations accessed by an
application and feeds that data to CacheSim which simulates
the content of the L1 cache and provides cache statistics of
the executing application.

4.1 DAAX

DAAX is the front-end tool that produces the input for the
CacheSim. It captures the instruction stream by stepping
through the program using the GDB debugger. For each
instruction the tool then reports the Program Counter (PC)
value and, for load/store instructions, determines the
memory reference virtual address. DAAX is written in
Expect. A user supplied configuration file defines the
range of code to be captured and an output file specification.

Figure 3 illustrates a block diagram of DAAX user
interface.

—

Application

e
Configuration
file
55 |
Figure 3: DAAX interface block diagram

4.2 CacheSim

CacheSim provides insight into the contents of a processor’s
L1 cache by mimicking what the cache controller would do
as an application is executed. Currently the tool has the
capability of simulating the caches of several members of
the PowerPC family.

PC and/or EA

valuesina
DAAX i

The PowerPC’s L1 cache is divided into two parts:
instruction cache and data cache. References accessed via
the program counter are processed by the instruction cache
and references accessed via the currently executing
instruction are processed by the data cache.

Input to CacheSim is provided by the DAAX and the user as
shown in Figure 4. This input is the value of the PC address

and the effective address of any accessed data. CacheSim
can simulate a virtual memory range of size 2°* bytes,

PC/EA stream
from DAAX
Hit/Miss: ratio
and usage
User mputted
PC/EA values]

4 4 o Cache content

histogranis
User defined | |Cache:Definition
range file File

Figure 4: CacheSim interface block diagram

CacheSim

allowing the user to simulate virtual memory addresses as
well as physical addresses if desired.

The current toolset only deals with virtual memory
addresses due to considerations of practicality and utility.
Simulating cache in the virtual memory domain is
straightforward, and more easily understood by most
programmers and test engineers. Virtual addressing is also
used by the JIFI (JPL's Implementation of a Fault Injector)

tool set as well as the system model, thus maintaining a
consistent system view across the tool set.

On all current PowerPC processors, the instruction and data
caches are nearly identical in configuration and
functionality, hence the current design of the tool similarly
implements a symmetrical cache architecture. The
difference between the data and instruction caches is
reflected in the valid state bits. The CacheSim ignores these
bits and implements a write thru mode cache. The initial
release of the tool was geared towards the immediate needs
of the REE project and focused on the PPC-750, which is
the default configuration, but considerations were taken to
design the tool in such a manner as to support future
upgrades. CacheSim can simulate different types of
processor caches by means of a custom cache configuration
file. This configuration file provides the tool with all the
parameters required for modeling the L1 cache such as
cache size, number of sets and degree of associativity.

During the simulation, CacheSim provides access to the full
contents of both caches, the ongoing hit/miss ratios, the
usage of each cache (percentage of cache that contains valid
or active data), and histograms of the cache content. By
providing a memory range file, the user can get customized
histograms that reflect which ranges of memory are active in
the cache.

5. Detailed Design and Operation

5.1 DAAX

DAAX runs the specified application on a single node under
GDB. It gathers PC and memory reference information
while stepping through the application. The parameters for
DAAX are specified in a user supplied configuration file.
The configuration file has as parameters the start and stop
points of the extraction, the application and any required
application input parameters. The application will run in
normal mode until the start point is reached. At this point
DAAX begins stepping through the application. A loop is
entered in which, for each instruction, the address
information is extracted until either the count parameter
(also set in the configuration file) or the stop point is
reached.

Within the loop, the following actions are performed: GDB
prints the current instruction in GDB’s standard format.
The instruction is then decoded to see if it is a load/store or
another type of instruction. If the instruction is not a load or
store, then the PC value is written to the output file. If the
instruction is a load or as store, then the effective address of
the memory reference is calculated and written to the output
file along with the PC value. There are two options for the
addressing mode: indexing and summation. If the
instruction is a store or a load (i.e., a read or write from or to
a memory location), then the effective address is calculated
by reading the registers referenced in the instruction and

performing the indicated operation, i.e., summation or
index. The final step in the loop is to compare the current
PC value to the stop value in the user configuration file. If
these values are equivalent then the loop is ended and the
application’s normal running sequence is resumed until the
application ends.

The final result is the DAAX output file consisting of an
ordered listing of PC and (where applicable) virtual memory
address references, with all loops unrolled. The flow of
operation for the DAAX tool is illustrated in figure 5.
The DAAX input parameters are illustrated in table 1.

Initialize
Configurations

Read config file and check all
parameters set

Spawn app under GDB and
setup start and end points
step and get instruction.info

I

if a load or store calctilate EA
(write'to file')

not end point chieck if-at endpoint

end point

continue app upon finish
cleanup L

Table 1 DAAX parameters

Parameters required by the tool

count number of instructions to step through
stepval the step unit

break start location where stepping starts

break_end location where stepping stops

logfile on/off capturing output into a log file
outputfile on/off the printing of EA and PC in a file
cache sim on/off output file for the cache simulator
appparams input arguments for the application
appname name of the application executable
apppath the path to the application executable

The output file will be of the format shown in table 2.

Table 2: Sample DAAX output

Example Sample Output format

PC EA
0x100066dc 0x7ffff66¢
0x100066€0

0x100066e4 0x7f1ff674
0x100066¢8 0x7ffff674
0x100066¢ec 0x7ffff614
0x10006610

5.2 CacheSim

Figure 6 is a functional block diagram of CacheSim. The
heart of the tool consists of the Simulation Core, which
updates the Virtual Cache based on the PC and Effective
Address (EA) inputs. These inputs (PC and EA), as
explained earlier, are obtained from the DAAX or entered
manually via the user interface. The output of the
CacheSim is a statistical analysis of the cache contents and
operation including hit/miss statistics and cache contents by
user definable region in histogram form. The User Interface
provides access and control of the output functions as well
as specification of the Simulation Core operational

The Cache Configuration File is an input to the Simulation
Core, which determines how the cache is structured. The
cache structure, in turn, determines how the input values
(PC and EA) will be parsed into tag address, set number and
block size. The parameters also determine the depth of the
associativity field. Figure 7 shows the PPC-750 cache
organization. Table3 shows the cache parameters for the
PPC-750.

T T T T T T T
128 Sets hd , 2 | , ;
L d T] LB T 1 T T
. .
[
[T T 1 T T T
Block0] Address Tag@ ’-— State Words [0-7]
—+— t t } i f
Block 1 Address Tag 1 r State Werds 10-7} h
k| 1 1 i 3 ¥)
T H 1 EHl ¥ H
Block 2 Address Tag 2 1 State Words 0-7
1 i i i i
L T 1 1 H 1
Block 3 Address Tag 3 State Words [0-7}
1 1 i L i i
L—_ 1 i EH 1 1 7
Block4] - Address Yag4 State Wards {0-7]
L— ~t t + t ¥ ¥
Block 5 Address Tag 5 State Words [0-7]
——+ } +——t +—
Block 6 Address Tag 6 State Words {6-7}
f f + + +
Block 7 Address Tag 7 State Words [0-7]
|-l———8 Words!Bhd(—-————»f

Figure 7: Cache configuration of PPC-750

parameters. The User Interface also allows the user to print
out the contents of the Virtual Cache.

Cache
Configuration

File &

PC/EA : Simulation
values i Core
User Liiterface P_

csevseenane

sresesaseens

Prrasrarierarsens

Virtual Cache :
(data structures)

[XEITTTTEYY

y

Data:Analysis
Block

— T

Histogram, Statistics;
and other outputs

Trersserrrenes

oy

.

Figure 6: Functional block of the cacheSim

Table 3: Cache Configuration File Parameters

Parameter Value
Sets 128
Associativity 8
Block size (words) 8
Word size (bytes) 4

The cache size (in bytes) is determined by the product of the
cache parameters in the Cache Configuration File.

cache size=(S*A*B* W))
where S is the number of sets, A is the set associativity of
the cache, B is the cache block size in words and W is the
word size in bytes. The case shown above, for example,

will have a cache size of 32 Kbytes (128*8*8*4),

The length of the tag field “T” (in bits) is also set by the
cache parameters.

tag_field length T = 32 —log,(S) — loga(B) — logo(W) (2)

The tag size in this case is 20 bits (32-7-3-2).

Table 4 shows the memory address field parsed into its T, S,
B and W components.

Table 4: Memory Address Field

<4——— 32 bit address T
LT [S B [W |
20 7 3 2

The Virtual Cache data structure is created, by the
Simulation Core using the cache parameters from the Cache

le

Read PC/EA values <

Parse set number and tag
Values

v

Go to Set and search for
Matching tag

Find Least Recently Used Wiite:new value ifneeded
block andupdate LRU

Write'niew value and
update LRU

P Done

Figure 8: Operational diagram of the Simulation Core

Configuration File as explained above.

The simulation core is the main component of the
CacheSim. Figure 8 illustrates the behavior of the
simulation core. It processes each PC and EA value
independently. The EA is optional as there are many
instructions that solely operate on registers, thus if an EA
value is not provided, the data cache will not be updated.
The PC and EA are parsed into set number, tag value and
block size as illustrated above in table 4. The address tag is
searched for in the set specified by the set number. If the
tag exists then address reference is considered a hit, and the
Virtual Cache contents and hit/miss statistics are updated. If
no tag is found the address reference is considered a cache
miss and the Virtual Cache contents and statistics are
updated. For the case of a cache miss the least recently used
block is determined using the Least Recently Used (LRU)
algorithm.

The LRU method is common with all the PowerPC
processors. A few PowerPC processors use a modified
algorithm known as pseudo-LRU. This modified version is
meant to speed up the process of deciding which block to

replace, however, with respect to its functionality, the
optimized method is very close to the standard LRU
algorithm. For our purposes, this estimation is sufficiently
accurate. The LRU algorithm is implemented by
sequentially numbering each memory access. Once a set is
full, the block replaced is the one with the lowest number.
If an existing block is being accessed again, i.e., in the case
of a cache hit, its old access number is replaced with the
access number of the new memory reference. In the case of
a cache miss the least recently used block (access number,
tag field...) is found and updated along with the hit/miss
statistics.

The process of updating the cache is the same whether the
processor is requested to read or write from that location.
The tool currently assumes the processor's cache is in write-
through mode, i.e., every update to the cache is immediately
written to the main memory. This eliminated dealing with
cache coherency operations and simplified the model and
was sufficiently accurate for our needs. The Data Analysis
Block performs statistical analysis of the cache usage data
as the simulation progresses. The tool tracks both cache hits
and misses. These values along with current count of valid
cache items are available through out the simulation. A
histogram function is also available to the user to track the
active contents of the cache. The histogram feature
calculates the number of active cache blocks in a specified
address range. The user can specify single or multiple
ranges, save a formatted file of the entire content for later
analysis, or quickly view the preset range statistics. The
contents of both caches can be saved or printed to the screen
for the users evaluation. The entire contents of the Virtual
Cache can also be saved to a binary file that can be restored
in later sessions.

An automation feature provides the ability to take a
snapshot of the cache statistics at intervals for use in
creating a cache time line. The cache timeline can be used
as an input to the system model or as a tool to assist in
application or system profiling.

An example of the CacheSim input and output files is
shown in Figure 9. The CacheSim input file is the DAAX
output file. The CacheSim output file shows a snapshot of
the statistics in time as the input file is processed. In this
sample, a portion of an application was processed by DAAX
and the results were fed into CacheSim. The CacheSim
output is the statistical data on the content of both caches
after 500 instructions were simulated on a "fresh" cache.
Out of the 500 instructions, 215 requested memory accesses.
The corresponding hit/miss ratios are displayed. The active
content distribution of each cache is also displayed grouped
by user defined memory ranges.

Sample DAAX Output Sample CacheSim Qutput
0x10009044 0x20003504 Instruction Cache
0x10009048 0x200034e4
0x1000804c main: (0x10001000 0x10007£00) 42 { 4.10%)
0x1000%050 fft: (0x10012320 0x10018900) 0 (0.00%)
0x10009054 gabor: (0x10008300 0x10009000) 0 { 0.00%)
0x10009058 Empty: () 975 (95.21%)
0x100090c8 0x200034e0
0x10009058 Data Cache
0x100090c8 0x200034e0
0x100090cc heap: (0x20002000 0x20050000) 0 (0.00%)
0x100090d0 data: (0x20000000 0x20002000) 17 (1.66%)
0x100090d4 stack: (Ox7£££0000 OxX7EEffEEE) 36 (3.52%)
0x100090d8 userl: (0x20000000 0x40000000) 17 (1.66%)
0x100090da Enpty: () 969 (94.63%)
0x100090dc
. count hit (%) miss (
0x1000be48
0x1000bedc Inst: | 500 | 90.20 | 9.80
0x1000b9%f0 Ox7fffed6d Data: | 215 | 89.00 | 11.00
0x1000b9f4 0x7£ffed70
0x1000b9£f8 Ox7£fffed00 Inst cache usage: 4.79% full
. Data cache usage: 2.37% full

Figure 9: Sample from an actual run

6. Conclusions and future work

The CCE was built to provide insight into the cache
contents over time during execution of applications on the
REE cluster computer. It provides a reasonable level of
simulation fidelity for the PPC-750 L1 Cache. The tool is
modular and flexible and can be easily ported to other
processors and processing systems.

There are certain limitations to the current tool including the
fact that it ignores the “valid” bits and implements only a
write through mode. This is of minimal impact to the
current REE project but maybe significant at a later time.
With this exception, the tool is relatively general purpose
and we anticipate that it will be used on future computer
development projects. Future work may include handling
other cache modes and implementing the valid bits and
associated algorithms.

CacheSim's operation and results were verified by manually
stepping instructions and verifying that the correct block in
the correct set was being updated and replaced if necessary.
The resulting statistics were also manually verified to ensure
correctness. A more thorough method of verification would
be to compare the results of a sample set of instructions
executed on a PowerPC and simulated on CacheSim.
However gaining insight to the content of L1 cache inside
the processor is a complicated task. This type of verification
remains as future work to be done.

Currently, there is no API or automated interface between
the DAAX and the CacheSim. A script will be written in the
future to provide this user-friendly feature. Similarly, there

exists no defined interface between the CCE and the System
Reliability Model. Future work may include such an
interface.

The most pressing issue for future work is the extension of
the CCE to capture OS level execution. The CCE currently
looks only at application level code. Future work will
include extending its capabilities to kernel or OS level code.

REFERENCES

[1]1 R. R. Some and D. C. Ngo, “REE: A COTS-Based Fault
Tolerant Parallel Processing Supercomputer for Spacecraft
Onboard Scientific Data Analysis,” Proc. of the Digital
Avionics System Conference, vol. 2, pp. B3-1-7 - B3-1-12,
1999.

[2] J. J. Beahan, L. Edmonds, R. D. Ferraro, A. Johnston, D.
Katz, R. R. Some, “Detailed Radiation Fault Modeling of
the Remote Exploration and Experimentation (REE) First
Generation testbed Architecture,” Aerospace Conf. Proc.,
vol. 5, pp. 279-291, 2000.

[3] R. Some, A. Agrawal, W. Kim, L. Callum, G.
Khanoyan, A. Shamilian, A. Nikora, " Fault Injection
Experiment Results in Space borne Parallel Application
Programs," IEEE Aerospace Conference, 2002

[4]R. Some, W. Kim, G. Khanoyan, L. Callum, A.
Agrawal, I, Beahan "A Software-Implemented Fault
Injection Methodology for Design and Validation of System
Fault Tolerance," Int. Conf. On Dependable Systems and
Networks (DSN ’2001), Géteborg, Sweden, July 2001

[5] J. J. Beahan, “SWIFL: A Software-Implemented Fault
Injection Tool,” JPL Internal Document, June 2000,

Raphael Some
John Beahan

Garen Khanoyan is o Systems test engineer on the REE
project at Jet Propulsion Laboratory. He has developed,
along with other system test team members, a method and a
tool set for conducting fault injection campaigns. He has a
BSEE from University of Southern California.

Leslie Callum is a system test engineer on the REE project
at Jet Propulsion Laboratory. She has developed, along
with other system test team members, a method and a tool
set for conducting fault injection campaigns. She has a
BSEE from University of California Los Angeles.

Acknowledgment

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology under a contract with the
National Aeronautics and Space Administration. This
project is part of NASA’s High Performance Computing
and Communications Program, and is funded through the
NASA Office of Space Sciences.

